6 research outputs found

    Research on single carrier frequency domain equalization system based on FQPSK modulation

    No full text
    Feher-patented quadrature phase shift keying (fqpsk) modulation is proposed for single-carrier frequency domain equalization (sc-fde). this paper puts forward a new method modulation called cc-bcd-fqpsk. the fqpsk signal is oversampled to make that the discrete fourier transform (dft)/ inverse dft (idft) processing of it can be applied for sc-fde. the methodology for maintaining waveform continuity with a cyclic prefix (cp) is presented. wrap-around viterbi algorithm (wava) is suggested for demodulation after equalization at the receiver. simulation results show that sc-fde system based on cc-bcd-fqpsk modulation has higher spectral efficiency than linear modulation qpsk and is an effective approach for eliminating isi and using nonlinear high power amplifier

    Research on single carrier frequency domain equalization system based on FQPSK modulation

    No full text
    Feher-patented quadrature phase shift keying (fqpsk) modulation is proposed for single-carrier frequency domain equalization (sc-fde). this paper puts forward a new method modulation called cc-bcd-fqpsk. the fqpsk signal is oversampled to make that the discrete fourier transform (dft)/ inverse dft (idft) processing of it can be applied for sc-fde. the methodology for maintaining waveform continuity with a cyclic prefix (cp) is presented. wrap-around viterbi algorithm (wava) is suggested for demodulation after equalization at the receiver. simulation results show that sc-fde system based on cc-bcd-fqpsk modulation has higher spectral efficiency than linear modulation qpsk and is an effective approach for eliminating isi and using nonlinear high power amplifier

    Secrecy Analysis of Cognitive Radio Networks over Generalized Fading Channels

    No full text
    At present, the fifth generation (5G) communication networks are in the time of large-scale deployment principally because its characteristics consists of large bandwidth, fast response, and high stability. As a partner of 5G, the Internet of Things (IoT) involves billions of devices around the world, which can make the wireless communication environment more intelligent and convenient. However, the problem that cannot be ignored is the physical layer security of 5G-IoT networks. Based on this, we perform a security analysis of cognitive radio networks (CRN) for IoT, where the CRN is the single-input multiple-output (SIMO) model experiencing κ-μ shadowed fading with multiple eavesdroppers. To analyze the confidentiality of the system under consideration, we analyze the security performance for the considered IoT systems with the help of the derived secure outage probability (SOP) and probability of strictly positive secrecy capacity (SPSC). As a verification of the theoretical formula, Monte Carlo simulation is also provided. The results of great interest are the factors that can produce better security performance in high SNRs region which consist of smaller M, smaller k, and larger N, and larger μ, smaller IP, and smaller Rth
    corecore